ექსცენტრისიტეტი

NPLG Wiki Dictionaries გვერდიდან
12:52, 6 თებერვალი 2024-ის ვერსია, შეტანილი Echelidze (განხილვა | წვლილი)-ის მიერ

გადასვლა: ნავიგაცია, ძიება

ექსცენტრისიტეტიკონუსური კვეთების (ელიფსის, ჰიპერბოლის, პარაბოლის) – რიცხვი, რომელიც ახასიათებს კონუსური კვეთის ფორმას და ტოლია კონუსური კვეთის წერტილიდან ფოკუსამდე და ამ წერტილიდან დირექტრისამდე მანძილთა ფარდობისა. ექსცენტრისიტეტი e: ელიფსისათვის – e<1, ჰიპერბოლისათვის – e>1, პარაბოლისათვის – e=1. ექსცენტრისიტეტი ახასიათებს მე-2 რიგის წირის (კონუსური კვეთის) ფორმას, სახეს: ორი კონუსური კვეთა, რომელთაც ტოლი ექსცენტრისიტეტები აქვთ, ერთმანეთის მსგავსია.

ტერმინი ლათინური წარმოშობისაა: ex – გარეთ, centrum - ცენტრი. excentrum – ცენტრის გარეთ. სახელწოდება გამართლებულია იმით, რომ ელიფსის ექსცენტრისიტეტი ხასიათდება ცენტრის მიმართ ფოკუსის გადაადგილებით. მაგალითად, თუ ელიფსისათვის ექსცენტრისიტეტი უახლოვდება ნულს, მაშინ ელიფსი თავისი ფორმით უახლოვდება წრეწირს, ხოლო, თუ ექსცენტრისიტეტი უახლოვდება ერთს, მაშინ ელიფსი იქნება უფრო გაჭიმული (შეკუმშული, გაბრტყელებული) და მიისწრაფვის მიიღოს მონაკვეთის – ელიფსის დიდი 2a ღერძის სახე.

ტერმინი შემოიღო კეპლერმა ნაშრომში „ახალი ასტრონომია“, 1609 წელს.


წყარო

მათემატიკის ენციკლოპედიური ლექსიკონი

პირადი ხელსაწყოები
სახელთა სივრცე

ვარიანტები
მოქმედებები
ნავიგაცია
ხელსაწყოები