რიმანის ინტეგრალი
NPLG Wiki Dictionaries გვერდიდან
(სხვაობა ვერსიებს შორის)
ხაზი 3: | ხაზი 3: | ||
:2. ფუნქცია მასზე შემოსაზღვრულია; | :2. ფუნქცია მასზე შემოსაზღვრულია; | ||
:3. ფუნქციის წყვეტის წერტილთა ლებეგის სიმრავლის ზომა არის ნული. | :3. ფუნქციის წყვეტის წერტილთა ლებეგის სიმრავლის ზომა არის ნული. | ||
+ | |||
+ | რიმანის ინტეგრალის განსაზღვრება ფაქტობრივად ო. კოშიმ მოგვცა (1823), მაგრამ იგი რიმანის ინტეგრალს იყენებდა უწყვეტი ფუნქციებისათვის. | ||
17:02, 26 ივლისი 2023-ის ვერსია
რიმანის ინტეგრალი – ჩვეულებრივი განსაზღვრული ინტეგრალი, რომლის არსებობის აუცილებელი და საკმარისი პირობა პირველად ბ. რიმანმა მოგვცა (1853 წ-ს, გამოქვეყნდა 1867 წ-ს). ეს პირობა თანამედროვე ტერმინებით შემდეგნაირად გამოისახება:
- 1. ინტერვალი, რომელზედაც განსაზღვრულია ფუნქცია, სასრულია;
- 2. ფუნქცია მასზე შემოსაზღვრულია;
- 3. ფუნქციის წყვეტის წერტილთა ლებეგის სიმრავლის ზომა არის ნული.
რიმანის ინტეგრალის განსაზღვრება ფაქტობრივად ო. კოშიმ მოგვცა (1823), მაგრამ იგი რიმანის ინტეგრალს იყენებდა უწყვეტი ფუნქციებისათვის.