გეომეტრია

NPLG Wiki Dictionaries გვერდიდან
(სხვაობა ვერსიებს შორის)
გადასვლა: ნავიგაცია, ძიება
ხაზი 16: ხაზი 16:
 
=====იხილე აგრეთვე=====
 
=====იხილე აგრეთვე=====
 
*[[გეომეტრია აბსოლუტური]] – იხ. აბსოლუტური გეომეტრია  
 
*[[გეომეტრია აბსოლუტური]] – იხ. აბსოლუტური გეომეტრია  
 
+
*[[გეომეტრია ალგებრული]] – იხ. ალგებრული გეომეტრია  
[[გეომეტრია ალგებრული]] – იხ. ალგებრული გეომეტრია  
+
*[[გეომეტრია ანალიზური]] – იხ. ანალიზური გეომეტრია.  
 
+
*[[გეომეტრია არაევკლიდური]] – იხ. არაევკლიდური გეომეტრია.  
[[გეომეტრია ანალიზური]] – იხ. ანალიზური გეომეტრია.  
+
*[[გეომეტრია გეგმილური]] – იხ. გეგმილური გეომეტრია.  
 
+
*[[გეომეტრია დიფერენციალური]] – იხ. დიფერენციალური გეომეტრია.  
[[გეომეტრია არაევკლიდური]] – იხ. არაევკლიდური გეომეტრია.  
+
*[[გეომეტრია ევკლიდური]] – იხ. ევკლიდური გეომეტრია.  
 
+
*[[გეომეტრია ელემენტარული]] – იხ. ელემენტარული გეომეტრია.  
[[გეომეტრია გეგმილური]] – იხ. გეგმილური გეომეტრია.  
+
*[[ლობაჩევსკის გეომეტრია|გეომეტრია ლობაჩევსკის]] – იხ. ლობაჩევსკის გეომეტრია.  
 
+
*[[მხაზველობითი გეომეტრია|გეომეტრია მხაზველობითი]] – იხ. მხაზველობითი გეომეტრია.  
[[გეომეტრია დიფერენციალური]] – იხ. დიფერენციალური გეომეტრია.  
+
*[[რიმანის გეომეტრია|გეომეტრია რიმანის]] – იხ. რიმანის გეომეტრია.  
 
+
*[[შინაგანი გეომეტრია |გეომეტრია შინაგანი]] – იხ. შინაგანი გეომეტრია.
[[გეომეტრია ევკლიდური]] – იხ. ევკლიდური გეომეტრია.  
+
*[[გეომეტრიის საფუძვლები]]  
 
+
*[[გეომეტრიული აგება]]  
[[გეომეტრია ელემენტარული]] – იხ. ელემენტარული გეომეტრია.  
+
*[[გეომეტრიული ადგილი]]  
 
+
*[[გეომეტრიული მწკრივი]]  
[[ლობაჩევსკის გეომეტრია|გეომეტრია ლობაჩევსკის]] – იხ. ლობაჩევსკის გეომეტრია.  
+
*[[გეომეტრიული პროგრესია]]  
 
+
*[[გეომეტრიული საშუალო]]  
[[მხაზველობითი გეომეტრია|გეომეტრია მხაზველობითი]] – იხ. მხაზველობითი გეომეტრია.  
+
*[[გეომეტრიული ფიგურა]]  
 
+
*[[გეომეტრიული ჯამი]]  
[[რიმანის გეომეტრია|გეომეტრია რიმანის]] – იხ. რიმანის გეომეტრია.  
+
 
+
[[შინაგანი გეომეტრია |გეომეტრია შინაგანი]] – იხ. შინაგანი გეომეტრია.
+
[[გეომეტრიის საფუძვლები]]  
+
[[გეომეტრიული აგება]]  
+
[[გეომეტრიული ადგილი]]  
+
[[გეომეტრიული მწკრივი]]  
+
[[გეომეტრიული პროგრესია]]  
+
[[გეომეტრიული საშუალო]]  
+
[[გეომეტრიული ფიგურა]]  
+
[[გეომეტრიული ჯამი]]  
+
  
 
==წყარო==
 
==წყარო==

15:36, 15 ნოემბერი 2023-ის ვერსია

გეომეტრიამათემატიკის ერთ-ერთი უძველესი დარგი, რომელიც შეისწავლის სხეულების სივრცულ ფორმებსა და თანაფარდობებს. აგრეთვე სივრცულის მსგავს სხვა ფორმებსა და თანაფარდობებს. გეომეტრია ბერძნული სიტყვაა - geometria და ნიშნავს მიწის ზომვას.

გეომეტრიის შექმნა უძველესი ხანიდან განაპირობა ადამიანის პრაქტიკულმა მოთხოვნილებებმა. უმარტივესი გეომეტრიული ცნებები და ფაქტები ცნობილი იყო ჯერ კიდევ ძველი ეგვიპტელებისათვის (ძვ. წ. II ათასწლეული). ისინი გეომეტრიულ ფაქტებს აყალიბებდნენ წესების სახით. გეომეტრია ძირითადად განვითარდა ძველ საბერძნეთში, სადაც თავს უყრიდნენ სხვადასხვა ფაქტს და ცნებას, ახდენდნენ მათ სისტემატიზაციას და გეომეტრიული წინადადებების მკაცრ ლოგიკურ დამტკიცებას. უძველეს დროშივე წარმოიშვა გეომეტრიული სხეულის (ფიგურის) აბსტრაქტული ცნება, როგორც ობიექტისა, რომელიც ინარჩუნებს მხოლოდ ფიზიკური სხეულის სივრცით თვისებებს და მოკლებულია ყველა სხვა თვისებებს, რომლებიც არ არიან დაკავშირებული მანძილის, განფენილობის და სხვა ცნებებთან.

ჩვენს წელთაღრიცხვამდე V ს-ში იწყება გეომეტრიის განვითარების ახალი ეტაპი, როდესაც საფუძველი ჩაეყარა გეომეტრიის აქსიომატური აგების ცდებს. ამ მიმართულებით უდიდესი მიღწევა იყო ევკლიდეს „საწყისები“ (დაახლ. III ს. ჩვ. ერ-დე), სადაც კაცობრიობის ისტორიაში პირველად გეომეტრია აღწერილი იყო აქსიომების საშუალებით. წიგნი იმდენად კარგად არის დაწერილი, რომ 2000 წლის განმავლობაში გეომეტრიის სწავლება ამ წიგნში მოცემული პრინციპების და დებულებების საფუძველზე ხდებოდა და დღესაც ითვლება ყოველგვარი დედუქციური მეცნიერების საფუძვლად.

გეომეტრია უწყვეტად ვითარდებოდა, მდიდრდებოდა ახალი თეორემებით, იდეებით, მეთოდებით.

შემდგომი დიდი წინსვლა გეომეტრიაში მოხდა XVII ს-ში, როდესაც ფრანგმა მეცნიერმა რენე დეკარტმა შემოიღო კოორდინატთა მეთოდი, რომელმაც შესაძლებელი გახადა გეომეტრიული ობიექტების შესასწავლად გამოეყენებინათ იმ დროისათვის განვითარებადი ალგებრა და უსასრულოდ მცირეთა ანალიზი. ამის საფუძველზე წარმოიშვა ანალიზური გეომეტრია, შემდგომ დიფერენციალური გეომეტრია. ამავე დროისათვის საფუძველი ჩაეყარა გეგმილურ გეომეტრიას (ჟ. დეზარგი, ბ. პასკალი, გ. მონჟი, შ. პონსელიე და სხვ.).

გეომეტრიის შემდგომი განვითარება დაკავშირებულია არაევკლიდური გეომეტრიის შექმნასთან (ნ. ლობაჩევსკი, ი. ბოლიაი, ბ. რიმანი, ე. კარტანი და სხვ.).

გეომეტრიული იდეები და მეთოდები საკმაოდ მნიშვნელოვან და ნაყოფიერ საფუძველს უქმნიდნენ მრავალი დარგის განვითარებას, როგორიცაა მრავალრიცხოვანი ფიზიკური თეორიები, მექანიკა, დიფერენციალური განტოლებები და სხვ. ტექნიკაში საერთოდ, იყენებენ ევკლიდურ გეომეტრიას, ვინაიდან იქ მთავარ როლს თამაშობს სხეულთა ფორმა და ზომები.


იხილე აგრეთვე

წყარო

მათემატიკის ენციკლოპედიური ლექსიკონი

პირადი ხელსაწყოები
სახელთა სივრცე

ვარიანტები
მოქმედებები
ნავიგაცია
ხელსაწყოები